摘要
本文给出动力点圆力偶作用于弹性全空间原点的解,并讨论它的性质.将脉冲荷载沿以原点为心、α半径,在z=0平面上的圆周切向均匀分布,当a→0时经积分运算即得问题的解.当此动力点圆力偶的强度按sinωt变化时,在弹性全空间中以z轴为轴,原点为顶点的锥面在任何时刻均为零应力面.以这些锥面为边界的回转体受按sinωt而变化的扭矩作用的动力扭转问题的解可由本文的解得出.
The solution of dynamic Point-Ring-Couple at the origin, on 2=0 plane, in an clastic space is presented and its properties are discussed. Let shocking loads be uniformly distributed, along the direction of circurference, at a circle, on z = 0 plane, with radius o and centered at the origin. Then, the solution of our problem is obtained via integral calculation for o->0. When the intensity of this dynamic Point-Ring-Couple is varied with sin cat, the cones in the elastic space with apex at the origin and the 2-axis be its symmetric axis, become zero stressed surfaces at any time instance. The solution of dynamic torsion problem of revolution solids with these cones as boundary under the application of torque varied with sin <oi is found
出处
《应用数学和力学》
CSCD
北大核心
1993年第10期845-852,共8页
Applied Mathematics and Mechanics
基金
广东省自然科学基金资助课题
关键词
点圆力偶
扭转
弹性全空间
解
point-ring-couple, torsion problem, elastodynamics