摘要
论述了对于任意一组满足不等式K(G)≤λ(G)≤δ(G)的三个整数,总有一个图与之相对应,该定理的证明给出了构造这种图的方法.并进一步讨论了满足条件的图中其最小图的顶点数.
In this paper, the author proves the existence of the graph corresponding with any set of three integers ( l,m,n ) which can satisfy the inequality 0<l≤m≤n, l=K(G), m=λ(G) , and n=δ(G) . Furthermore, a method to construct the graph is presented due to the proof of the theorem. And the number of vertices of the minimum graph among the graphs which satisfy the inequality 0<K(G)≤λ(G)≤δ(G) is discussed as well.
出处
《天津城市建设学院学报》
CAS
1998年第2期57-59,共3页
Journal of Tianjin Institute of Urban Construction
关键词
证明
不等式
整数
性质
定理
构造
条件
顶点数
对应
vertex connectivity K(G) , edge connectivity λ(G) , minimum degree of the vertices δ(G) , connected component, complete graph