期刊文献+

基于运动信息与多尺度分水岭的视频目标分割 被引量:1

Video Object Segmentation Algorithm Based on Motion Information and Multi-resolution Watershed
下载PDF
导出
摘要 从视频序列中提取视频目标是基于内容编码中的一项关键技术。提出了将高阶统计运动检测和多尺度分水岭相结合的视频目标分割算法。该算法首先利用高阶统计运动检测算法检测出运动区域,通过后处理得到运动目标的初始模板。然后,用小波变换对视频图像进行多分辨率分解。在最低分辨率上应用分水岭算法分割得到具有精确边缘的分割区域,通过将区域融合后的区域逐步投影到高分辨率图像上并结合高分辨率图像上的分水岭算法逐步提取出具有精确边缘的区域。最后,将运动目标的初始模板和多尺度分水岭分割得到的区域结合起来提取出具有精确边缘的视频对象。实验结果表明该算法能有效地分割和提取出视频序列中的视频对象。 Extracting the video object is a key technology in content-based video coding such as MPEG-4. An algorithm extracting video object is proposed by utilizing the HOS (higher order statistics) and multi-resolution watershed algorithm in video sequences. First, the HOS is used for motion detection. Then through post-processing, a rough motion mask can be obtained. After creating multi-resolution images using a wavelet transform, over-segmented regions with accurate boundaries are obtained by using watershed algorithm in low-resolution image. Second, the merged regions in low-resolution image are projected into a high-resolution image level by level. Third, the regions with accurate boundaries are extracted through combining the projection and the regions segmented using watershed in high-resolution images. Finally, the video object with accurate boundaries is extracted by integrated the motion mask and regions segmented by multi-resolution watershed. The experimental results show that the proposed algorithm improves the performance of detecting moving object and good segmentation results can be obtained.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第4期37-39,共3页 Computer Engineering
基金 国家自然科学基金资助项目(30300088) 江苏省自然科学基金资助项目(BK2001137)
关键词 高阶统计 运动检测 视频分割 目标提取 Higher order statistics(HOS) Motion detection Video segmentation Object extraction
  • 相关文献

参考文献6

  • 1Meier T, King N. Automatic Segmentation of Moving Objects for Video Object Plane. Generation[J]. IEEE Trans. on Circuits and System for Video Technology, 1998, 8(5): 525-538
  • 2Neri A, Colonnese S, Russo G. Automatic Moving Object and Background Separation[J]. Signal Processing, 1998,66:219-232
  • 3Cavallaro A, Ebrahimi T.Video Object Extraction Based on Adaptive Background and Statistical Change Detection[C]. Proc. of SPIE Electronic Imaging 2001 - Visual Communications and Image Processing, San Jose (California, USA), 2001-01-21:465-475
  • 4Meier T, King N. Video Segmentation for Content-based Coding[J].IEEE Trans. on Circuits and System for Video Technology, 1999, 9(8):1190-1203
  • 5Wei W, Ngan K N.Automatic Video Object Segmentation for MPEG-4 [C]. Proceedings of SPIE-the International Society for Optical Engineering, 2003,5150:9-19
  • 6Changick K, Hwang J N. Fast and Automatic Video Object Segmentation and Tracking for Content-based Application[J]. IEEE Trans. on Circuits and System for Video Technology, 2002, 12(2):122-129

同被引文献8

  • 1韩广良,顾海军,宋建中,董学志.基于实时序列图像复杂背景下运动目标的提取[J].吉林大学学报(信息科学版),2003,21(S1):7-11. 被引量:4
  • 2张旭光,韩广良,孙巍,雷凯,王延杰.复杂背景下运动目标的提取[J].光电工程,2006,33(4):10-13. 被引量:20
  • 3Yunchu Z,Zize L,Zengguang H,et al. An Adaptive Mixture Gaussian Background Model with Online Background Reconstruction and Adjustable Foreground Mergence Time for Motion Segmentation[A]. Industrial Technology. ICIT[C], 2005:23-27.
  • 4Lampropoulos G A ,Boulter J F. Filtering Of Moving Targets Using SBIR Sequential Frames [J]. IEEE Transactions on Aerospace and Electronic Systems, 1995,31 (4) : 1255-1267.
  • 5Yu M L,Hsiao R T, Shyang L C, et al. Video Stabilization for a Camcorder Mounted on a Moving Vehicle [J]. IEEE Transactions on Vehicular Technology, 2004,53 (6) : 1636-1648.
  • 6Agustin Ifarraguerri,Chein-I Chang. Unsupervised Hyper Spectral Image Analysis with Projection Pursuit[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(6) :2529-2538.
  • 7Noe B J, Ham F M. Change Detection through Subspace Projection Using Independent Component Analysis to Track Moving Targets in Scenery[A]. Neural Networks. IJCNN[C].2001,1 : 703-708.
  • 8Hel O Y, Hel O H. Real-Time Pattern Matching Using Projection Kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(9):1430-1445.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部