期刊文献+

决策树技术及其当前研究方向 被引量:63

Decision Tree Technique and its Current Research
下载PDF
导出
摘要 介绍了决策树归纳技术及其发展过程,阐述了目前最流行的决策树技术的基本方法及简化决策树的主要方法。同时介绍了决策树技术面临的挑战,目前在与其他技术结合,寻找新的构造方法,简化方法,训练与检验数据的大小及特性与其本身特性的关系,不确定环境下决策,时间复杂度与准确性之间的关系,软件实现等方面的研究,以及它在工程上的应用,展望了它的未来发展前景。 An introduction and overview of decision tree induction technique is provided. The basic methods of the current technique of decision tree pruning are discussed. The key ways of simplifying decision trees are also discussed. The research directions of decision tree technique and its engineering applications are reviewed, such as integration with other techniques, better methods to construct and simplify, the impact of data size and quality on decision tree performances, how to build decision trees in an uncertain environment, the trade-off between time complexity and accuracy, software implementation of decision tree induction, etc. The future picture for decision tree techniques is given.
出处 《控制工程》 CSCD 2005年第1期15-18,21,共5页 Control Engineering of China
关键词 决策树修剪 工程应用 人工智能 决策树归纳法 决策树技术 decision tree decision tree pruning engineering application
  • 相关文献

参考文献30

  • 1Mingers J. An empirical comparison of selection measures for decision tree induction [J]. Machine Learning, 1989, 3(3):319-342.
  • 2Quinlan J R. Simplifying decision trees[J]. Int J of Man-machine Studies, 1987, 27(3):221-234.
  • 3Knoll U, Nakhaeizadeh G, Tausend B. Cost sensitive pruning of decision trees [A]. Proceedings of ECML-94 [C]. Barlin:Springer-verlag, 1994.
  • 4Andrew B, Brain C L. Cost-sensitive decision tree pruning use of the ROC curve [C]. Canberra, Australia: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, 1995.
  • 5Esposito F, Malerba D, Semeraro G. A comparative analysis of methods for pruning decision trees [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5):476-491.
  • 6Boz O. Extracting decision trees from trained neural networks [C]. Edmonton, Alberta, Canada:Proc of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.
  • 7Sethi L. Entropy nets: from decision trees to neural networks [J]. Proc of IEEE, 1990, 78(10): 1605-1613.
  • 8Olaru C, Wehenkel L. A complete fuzzy decision tree technique [J]. Fuzzy Sets and Systems, 2003, 138(2): 221-254.
  • 9Dong M, Kothari R. Look-ahead based fuzzy decision tree induction [J]. IEEE Transactions on Fuzzy Systems, 2002, 9(3): 461-468.
  • 10Cantu-Paz E, Kamath C. Inducing oblique decision trees with evolutionary Algorithms [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(1):54-68.

同被引文献537

引证文献63

二级引证文献329

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部