摘要
运用α=O(β) ,α=o(β) ,β =o(α)在 1∞ 型极限中的理论和α~ β的代换在 1∞ 型极限中的应用 ,论述了 1∞ 型极限的解题方法 ,克服了教科书中解题方法单一的缺点 ,拓宽了求解此类型极限的思路。
By applying the theory of α=O(β),α=o(β),β=o(α)? in the 1 ∞-Type Limit and the use of α~β replacement in 1 ∞-type Limit,this article tries to deliberate on the resolution of 1 ∞-Type Limit.This resolution solves the weak point of the mono way in the textbooks,and broadens the minds of resolution of this type of limitation.
出处
《石家庄职业技术学院学报》
2003年第4期50-51,共2页
Journal of Shijiazhuang College of Applied Technology
关键词
1∞型极限
同阶无穷小
高阶无穷小
等价无穷小
解题方法
Type Limit
infinity small
grade same infinity small
advanced infinitely small
equivalent infinity small