期刊文献+

基于小波的视频镜头自适应分割 被引量:2

Adaptive Segmentation of Video Shot Based on Wavelet
下载PDF
导出
摘要 随着多媒体技术的发展 ,出现了大量的视频数据 .但由于视频数据是非结构性的 ,因此为了便于视频的检索和浏览 ,必须对视频进行分段 ,而将镜头作为分段的基本单位是比较适合的 .通过仔细分析镜头串接的特点 ,根据小波的特性和小波变换检测奇变点的优点 ,提出了应用小波变换检测视频内容差异度函数奇变点的方法对镜头边界进行检测 .首先取一段视频 ,选取亮度直方图对视频的内容进行描述 ,然后提取视频内容差异度变化曲线 ,再进行多分辨小波分解 ,去噪后找出模极大值点 ,经过跟踪可较准确地找出镜头边界 .实验证明 ,该方法能自适应的对视频进行分割 ,对各种类型的镜头边界有较好的检测效果 . With the development of multimedia technology, the amount of multimedia video data is enlarged at an explosive speed. As video data isn't structural, we have to detach it in order to index and browse video. It is a good method to use shots as the basic units. The analysis of character of shots sequence. It is not a good method using common threshold based because of the variety content of video and the different shot transition type. A novel wavelet based shot boundary detection approach is proposed to overcome these difficulties, it regards the shot change detection as the singularity position detection of frame frame difference function. This makes the selection of threshold easier and gets a good performance. Selecting a video segment and picking up frame to frame difference curve is the first step. in order to improve the speed of the segmentation, an intensity histogram based content description scheme is adopted, the description is sufficient and efficient. The next step is to analyze frame to frame difference function by wavelet transform. Then we filter the noise and find out the module max. Finally we can get the edge of shots accurately by tracking. It is a great method to detach video data adaptively and examine all kinds of shot edges.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第4期415-421,共7页 Journal of Image and Graphics
关键词 小波变换 视频镜头 自适应分割 镜头边界 边界检测 鲁棒性 阈值选择 Computer image processing, Shot, Difference of content, Multiresolution analysis, Lipschitz constant
  • 相关文献

参考文献9

  • 1Zhang H J, Kankanhalli A, Smoliar S. Automatic partitioning of full-motion video[J]. Multimedia Systems, 1993,1 (1) : 10-28.
  • 2Toiler M S, Lewis P H, Nixon M S. Video segmentation using combined cues[J]. Proc. SPIE, 1997,3312;414-425.
  • 3[美]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 4Rioul O, Verrerli M. Wavelets and signal processing[J]. IEEE SP Mag. , 1991,8(4):14-38.
  • 5Mallat S G, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Trans. Inf. Theory, 1992,38(2):617-643.
  • 6Mallat S G. A theory for multiresolution signal decomposition:The wavelet representation [J]. IEEE Trans. PAMI, 1989,11 (7) : 674-693.
  • 7Mallat S G. Multifrequency channel decompositions of imagesand wavelet models[J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1989,37(12):2091-2110.
  • 8Mallat S G, Zhong S. Characterization of signals from multiscale edges[J]. IEEE Trans. PAMI. 1992,14(7):710-732.
  • 9Mallat S G. Zero-crossing of wavelet transform[J]. IEEE Trans. Inf. Theory, 1991,37(4):1019-1033.

共引文献25

同被引文献26

  • 1朱曦,林行刚.视频镜头时域分割方法的研究[J].计算机学报,2004,27(8):1027-1035. 被引量:20
  • 2[4]LIENHART R.Comparison of automatic shot boundary detection algorithms[C]∥In Proc.of SPIE Storage and Retrieval for Image and Video Databases VII,San Jose,CA,U.S.A.1999.
  • 3[5]NGO C W,ZHANG H J,PONG T C.Recent Advances in Content-based Video Analysis[J].International Journal of Image and Graphics,2001,1(3):445-468.
  • 4[7]LU T,SUGANTHAN P N.An accumulation algorithm for video shot boundary detection[J].Multimedia Tools and Applications,2004,22(1):89-106.
  • 5[10]LI W K,LAI S H.Integrated video shot segmentation algorithm[C]∥SPIE Conf.on Storage and Retrieval for Media Databases.Santa Clara,California,2003.
  • 6[11]GAO X,TANG X.Unsupervised video shot segmentation and model-free anchorperson detection for news video story parsing[J].IEEE Transaction on Circuits,Systems and Video Technology,2002,12(9):765-776.
  • 7[12]CERNEKOVA Z,NIKOU C,PITAS I.Shot detection in video sequences using entropy-based metrics[C]∥IEEE 2002 International Conference on Image Processing.Rochester.New York,2002.
  • 8[14]HANJALIC A.Shot-boundary detection:unraveled and resolved?[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(2):90-105.
  • 9[15]ZHANG H J,ZHONG D,SMOLIAR S W.An integrated system for content-based video retrieval and browsing[J].Pattern Recognition,1997,30(4):643-658.
  • 10[17]ZABIH R,MILLER J,MAI K.Feature-based algorithms for detecting and classifying scene breaks[J].ACM Journal of Multimedia Systems,1999,7(2):119-128.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部