摘要
本文应用Euler方程和Schwafdzschild度规求出了星在中心具有黑洞的星团中的分布。结果表明星的分布依赖于多方指数和星离中心的距离。除了得到了已有的结果[1]、[2]和n(r)~r^(-2)外,还得了n(r)~r^(-3)。
In this paper, Euler's equation and Schwarzchild metric have been used to calculate the distribution of stars in a cluster with a black hole at its center. The results show that the distribution depends on both radiur and polytropie index. Besides the know results(n(r)~r^(-9/4), n(r)~r^(-7/4), and n(r)~r^(-2)), another result (n(r)~r^(-3)) has also been obtained.
出处
《云南师范大学学报(自然科学版)》
1993年第3期27-31,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
关键词
星团
黑洞
欧拉方程
球状分布
Euler's equation Schwarzschild metric Star cluster.