期刊文献+

多元周期函数的半数值展开

A Semi-Numerical Expansion of Mutivariate Periodic Function
下载PDF
导出
摘要 本文给出了多元周期函数的半数值展开的数学依据;讨论了这种半数值展开在计算机上的实现;并用月球主问题的摄动函数进行了验证。结果表明这种半数值展开与文字展开符合得很好;并讨论了用这种方法求解摄动方程的优越性。 This paper reports on the mathematical basis for the seminumerical development of the multivariate periodic function.How this semi-numerical development is realized with the aid of a computer is studied.This development is examined and tested by means of the disturbing function of the luner main problem.The results show that the development is in accordance with the literal expansion very well.The advantage of this method in solving the perturbation equation is also discussed.
出处 《云南天文台台刊》 CSCD 1993年第2期1-7,共7页 Publications of the Yunnan Observatoty
关键词 计算法 摄动 多元周期函数 半数值 Method of reduction Disturbance
  • 相关文献

参考文献5

  • 1J. Kovalevsky. Applications of computers to celestial mechanics[J] 1988,Celestial Mechanics(1-3):11~17
  • 2S. Ferraz-Mello. A semi-numerical expansion of the averaged disturbing function for some very-high-eccentricity orbits[J] 1988,Celestial Mechanics(1-3):65~68
  • 3Jacques Henrard. A survey of Poisson series processors[J] 1988,Celestial Mechanics(1-3):245~253
  • 4R. A. Broucke. A FORTRAN-based Poisson series processor and its applications in celestial mechanics[J] 1988,Celestial Mechanics(1-3):255~265
  • 5R. A. Howland. Computer implementation of an algorithm for the quadratic analytical solution of Hamiltonian systems[J] 1982,Celestial Mechanics(1):23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部