期刊文献+

GLOBAL DYNAMICS OF DISSIPATIVE GENERALIZED KORTEWEG-DE VRIES EQUATIONS

GLOBAL DYNAMICS OF DISSIPATIVE GENERALIZED KORTEWEG-DE VRIES EQUATIONS
原文传递
导出
摘要 This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space V. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.
作者 尤云程
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第4期389-402,共14页 数学年刊(B辑英文版)
关键词 Dissipative generalized KdV equation Global dynamics Inertial manifold SOLITON VRIES方程 广义耗散KdV方程 整体动力学 惯性流形
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部