期刊文献+

PERIODIC SOLUTIONS OF A CLASS OF SUPERQUADRATIC SECOND ORDER HAMILTONIAN SYSTEMS

PERIODIC SOLUTIONS OF A CLASS OF SUPERQUADRATIC SECOND ORDER HAMILTONIAN SYSTEMS
全文增补中
导出
摘要 In this paper, a sufficient condition for the periodic solution with prescribed period for a class of superquadratic second order Hamiltonian systems x¨+Ax+ Δ F(x)=0 is obtained by using the critical point theory, where A≠0 and is an n×n real symmetric matrix and is non definite. In this paper, a sufficient condition for the periodic solution with prescribed period for a class of superquadratic second order Hamiltonian systems x¨+Ax+ Δ F(x)=0 is obtained by using the critical point theory, where A≠0 and is an n×n real symmetric matrix and is non definite.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2000年第3期259-266,共8页 高校应用数学学报(英文版)(B辑)
关键词 Hamiltonian system periodic solution critical point. Hamiltonian system, periodic solution, critical point.
  • 相关文献

参考文献8

  • 1Yin Qun and Hong Youcheng, Forcedoscillations of a class of second order Hamiltonian systems,Chinese Ann. Math. Ser. A,1994,15(6):701-705.
  • 2Hong Youcheng and Yin Qun, Periodic solution of a class of second order Hamiltoniansystems, J.Math. Res. Exposition, 1996,1:13-19.
  • 3Mawhin, J. and Willem, M. , Critical Point Theory and Periodic Solutions ofHamiltonian Systems,Springer-verlag, New Nork, 1989.
  • 4Benci, V. and Rabinowitz, P.H. , Critical point theorems for indefinitefunctionals, Invent. Math. ,1979,52:241-273.
  • 5Rabinowitz, P. H. , Minimax methods in critical point theory with applications todifferential equation, CBMS Regional Conf. Ser. in Math. , 1986, No. 65.
  • 6Krasnoselski, M.A. , Topological Methods in the Theory of Nonlinear IntegralEquations, Macmil-lan, New York, 1964.
  • 7Ekeland, I. , Periodic solutions of Hamiltonian equations and a theorem of P.Rabinowitz, Journal of Differential Equations, 1979,34: 524-534.
  • 8Bartolo, P. , Benci, V. and Fortunato, D. , Abstract critical point theorems andapplications to somenonlinear problems with "strong" resonance at infinity,Nonlinear Anal. T. M. A. , 1983 (9):981-1012.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部