期刊文献+

过冷Ni-31.44%Pb偏晶合金凝固行为

Solidification Behavior of Undercooled Ni-31.44% Pb Monotectic Alloy
下载PDF
导出
摘要 采用熔融玻璃净化和循环过热相结合的方法研究Ni 3 1.44%Pb偏晶合金宽过冷区间凝固组织演化规律 ;结果表明 ,过冷偏晶合金在快速凝固阶段首先形成枝晶α骨架 ,再辉重熔后分布于枝晶间的残余液相按照平衡凝固模式进行后续反应 ;在0~ 2 86K过冷范围内 ,当ΔΤ <5 0K时 ,合金凝固组织为粗大枝晶α +枝晶间Pb相 ;当 70 <ΔT <2 3 2K时 ,凝固组织为细密枝晶α +枝晶臂上细小的Pb颗粒 +枝晶间Pb相 ;当ΔT >2 42K时 ,凝固组织为过冷粒状晶 +均匀细小的Pb颗粒 +少量尺寸较大的枝晶间Pb颗粒 。 Solidification behavior of undercooled Ni 31.44%Pb monotectic alloy was studied systematically by employing the complex method of molten glass denucleating combined with thermal cycling. Results of structural evolution showed that undercooled monotectic alloy solidified in the form of dendrite essentially during the stage of rapid solidification and after recalescence, the residual melts between the dendrites solidified in the equilibrium mode. Within the achieved undercooling range, the solidification structures were classified into three categories. When the undercooling was less than 50K, the structures were composed of coarse dendrites and interdendritic lead phase. With the undercooling increasing into the range of 70 to 232K, the dendrites were refined and because of solute trapping, fine lead particles separated out from supersaturated dendrite arms. When the undercooling exceeded 242K, the granular structures formed. The granulation mechanism of undercooled granular grains is owing to the primary dendrite disintegration and recrystallization.
出处 《铸造技术》 CAS 北大核心 2001年第4期57-59,共3页 Foundry Technology
基金 国家自然科学基金 (59871 0 4 1 ) 陕西省教委科研基金(99JK2 2 3)
关键词 深过冷 Ni-Pb偏晶合金 组织演化 粒化机制 High undercooling Ni Pb monotectic alloy Structural evolution Granulation mechanism
  • 相关文献

参考文献13

  • 1李德林,杨根仓,周尧和.A new approach to preparing dimensional amorphous alloys[J].Mater Sci Lett,1992,11:1033~1035
  • 2Trivedi R, Magnin P and Kurz W. Theory of eutectic growth under rapid solidification conditions[J].Acta Metall,1987,35(4):971~980
  • 3XI Zeng-zhe, YANG Gen-cang and ZHOU Yao-he.Growth morphology of Ni3Si in hihly undercooled Ni-Si eutectic alloy[J].Progress in Natural Science,1997,7(5):624~631
  • 4Umeda T, Okane T and Kurz W. Phase selection during solidification of peritectic alloys[J].Acta Mater,1996,44(10):4209~4216
  • 5Loser W and Herlach D M. Theoretical treatment of the solidification of undercooled Fe-Cr-Ni melts[J].Metall Trans A,1992,23A:1585~1591
  • 6Ludwig A,Wanger L, Lackmann J,Sahm P R. Underooling of superalloy melts: basis of a new manufacturing technique for single-crystal turbine blades[J].Mater Sci Eng,1994,(178A):299~303
  • 7LI Jin-fu, LIU Yong-chang, LU Yi-li,YANG Gen-cang and ZHOU Yao-he. Structural evolution of undercooled Ni-Cu alloys[J].J Cryst Growth,1998,192:462~470
  • 8Munitz A and Abbaschian R. Liquid separation in Cu-Co and Cu-Co-Fe alloys solidified at high cooling rates[J].J Mater Sci,1998,33:3639~3649
  • 9孙占波,宋晓平,胡柱东,杨森,曹崇德,魏炳波.深过冷条件下Cu-Co合金的液相分解[J].中国有色金属学报,2001,11(1):68-73. 被引量:12
  • 10Dwyer Z B. Factors affecting stable planar growth during the directional solidification of hypermonotectic aluminium indium alloys[D]. Diss Abstr Int, University of Alabama(Birmingham),U.S.A.,1995,55(8):179

二级参考文献20

  • 1[1]X.F. Guo, F. Liu, G.C. Yang and J.D. Xing, Acta MetalL Sin. 4 (2000) 351 (in Chinese).
  • 2[2]J.L. Walker, in The Physical Chemistry of Process Metallurgy, Part 2ed. G.R. St Pierre (Interscience,New York, 1959) p.845.
  • 3[3]G. Hovay, Int. J Heat Mass Transfer 8 (1965) 195.
  • 4[4]M.E. Glicksman, Acta Metall. 13 (1965) 1231.
  • 5[5]T.Z. Kattamis and M.C. Flemings, AFS Trans. 75 (1967) 191.
  • 6[6]T.Z. Kattamis, J. Crystal Growth 34 (1976) 215.
  • 7[7]G.L.F. Powell, J Aist. Inst. Met. 10 (1965) 223.
  • 8[8]G.L.F. Powell and L.M. Hogan, Trans. AIME 242 (1968) 2133.
  • 9[9]G.L.F. Powell and L.M. Hogan, Trans. AIME 245 (1969) 407.
  • 10[10]B.L. Jones and G.M. Weton, J Aust. Inst. Met. 15 (1970) 167.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部