摘要
In this article we extend ours framework of long time convergence for numeracal approximations of semilinear parabolic equations prorided in “Wu Haijun and Li Ronghua, Northeast. Math. J., 16(1)(2000), 1—28”, to the Gauss Ledendre full discretization. When apply the result to the Crank Nicholson finiteelement full discretization of the Navier Stokes equations, we can remore the grid ratio restriction of “Heywood, J. G. and Rannacher, R., SIAM J. Numer. Anal., 27(1990), 353—384”, and weaken the stability condition on the continuous solution.
In this article we extend ours framework of long time convergence for numeracal approximations of semilinear parabolic equations prorided in “Wu Haijun and Li Ronghua, Northeast. Math. J., 16(1)(2000), 1—28”, to the Gauss Ledendre full discretization. When apply the result to the Crank Nicholson finiteelement full discretization of the Navier Stokes equations, we can remore the grid ratio restriction of “Heywood, J. G. and Rannacher, R., SIAM J. Numer. Anal., 27(1990), 353—384”, and weaken the stability condition on the continuous solution.