期刊文献+

Long-time Convergence of Numerical Approximations for Semilinear Parabolic Equations (Ⅱ) 被引量:1

Long-time Convergence of Numerical Approximations for Semilinear Parabolic Equations (Ⅱ)
下载PDF
导出
摘要 In this article we extend ours framework of long time convergence for numeracal approximations of semilinear parabolic equations prorided in “Wu Haijun and Li Ronghua, Northeast. Math. J., 16(1)(2000), 1—28”, to the Gauss Ledendre full discretization. When apply the result to the Crank Nicholson finiteelement full discretization of the Navier Stokes equations, we can remore the grid ratio restriction of “Heywood, J. G. and Rannacher, R., SIAM J. Numer. Anal., 27(1990), 353—384”, and weaken the stability condition on the continuous solution. In this article we extend ours framework of long time convergence for numeracal approximations of semilinear parabolic equations prorided in “Wu Haijun and Li Ronghua, Northeast. Math. J., 16(1)(2000), 1—28”, to the Gauss Ledendre full discretization. When apply the result to the Crank Nicholson finiteelement full discretization of the Navier Stokes equations, we can remore the grid ratio restriction of “Heywood, J. G. and Rannacher, R., SIAM J. Numer. Anal., 27(1990), 353—384”, and weaken the stability condition on the continuous solution.
出处 《Northeastern Mathematical Journal》 CSCD 2001年第1期75-84,共10页 东北数学(英文版)
关键词 long time convergence semilinear porabolic equations Gauss Legendre method long time convergence, semilinear porabolic equations, Gauss Legendre method
  • 相关文献

参考文献1

  • 1Dekker,K. and Verwer,J. G.Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations,North-Holland[].Amsterdam.1984

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部