期刊文献+

EXISTENCE OF PERIODIC SOLUTIONS OF PLANAR SYSTEMS WITH FOUR DELAYS 被引量:3

EXISTENCE OF PERIODIC SOLUTIONS OF PLANAR SYSTEMS WITH FOUR DELAYS
下载PDF
导出
摘要 The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions. The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第4期355-363,共9页 高校应用数学学报(英文版)(B辑)
基金 Supported by NNSF of China (1 9971 0 2 6 )
关键词 Planar systems non constant periodic solutions coincidence degree the a priori estimate. Planar systems, non constant periodic solutions, coincidence degree, the a priori estimate.
  • 相关文献

参考文献11

  • 1Taboas, P., Periodic solutions of aplanar delay equation, Proc. Roy. Soc. Edinburgh Sect. A, 1990,116:85-101.
  • 2Baptistini, M. and Taboas, P., On the existence and global bifurcation of periodicsolutions to planar differential delay equations, J. Differential Equations,1996,127:391-425.
  • 3Godoy, S.M.S. and dos Reis, J.G., Stability and existence of periodic solutions ofa functional differential equation, J.Math. Anal.Appl.,1996,198:381-398.
  • 4Ruan Shigui and Wei Junjie,Periodic solutions of planar systems with two delays,Proc. Roy. Soc. Edinburgh Sect. A, 1999,129:1017-1032.
  • 5Jones,G., The existence of periodic solution of f′(x)=-αf(x-1)[1+f(x)],J.Math.Anal.Appl.,1962,5:435-450.
  • 6Nussbaum,R.D.,Periodic solutions of some nonlinear autonomous functionaldifferential equations, Ann.Math. Pura Appl., 1974,101:263-308.
  • 7Chow,S.N. and Hale,J.K.,Periodic solutions of autonomous equations, J.Math.Anal.Appl., 1978,66:495-506.
  • 8Hale,J.K.and Lunel,S.M.V., Introduction to Functional Differential Equations,Springer,NewYork,1993.
  • 9Chow,S.N. and Mallet-Paret, J., The fuller index and global Hopf bifurcation,J.Differential Equations, 1978,29:66-85.
  • 10Erbe, L.H., Krawcewicz,W., Geba, K., et al., S′-degree and global Hopfbifurcation theory of functional-differential equations, J.Differential Equations1992,98:277-298.

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部