期刊文献+

Degree Sum and Neighborhood Intersections for Hamilton-connection

下载PDF
导出
摘要 Let S^23 denote an independent set with mini dist (u,v)|u, v∈S} = 2 and |S|=3. Our main result is the following theorem: Let G be a 3-connected graph of order n such that d(u)+d(v)+d(w)≥n+1+|N(u)∩N(v)∩N(w)|for any independent set S^23={u,v,w}, then G is Hamilton-connected.
作者 GERen-fu
出处 《徐州师范大学学报(自然科学版)》 CAS 2002年第3期15-18,共4页 Journal of Xuzhou Normal University(Natural Science Edition)
  • 相关文献

参考文献4

  • 1Bondy J A, Murty U S R. GraphTheory with Applications[M].London:Macmillan,1976.
  • 2Bauer Douglas, Broersma H J, Veldman H T. A generalization of a result of Haggkvistand Nicoghossian [J].J Combinatorial Theory (series B ), 1989,47,237.
  • 3Flandrin E,Jung H A,Li H. Hamiltonism degree sum and neighborhood,intersections[J]. Discrete Math,1991,90:41.
  • 4Ainouche A. A short proof of a theorem on a Hamiltonian graphs[J].J GraphTheory,1996,22:83.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部