期刊文献+

缺值背景中的概念分析与知识获取 被引量:1

Concept Analysis and Knowledge Acquisition in Missing-Value Context
全文增补中
导出
摘要 In formal concept analysis ,concept lattice as the fundamental data structure can be construct-ed front a formal context. Howevt, r,it is required that the relation between object and feature in the for-real context should be certain, For uncertain relation,this paper uses the thoughts of upper and lowerapproximation in rough set theory to deal with it ,and gives out the corresponding definitions of missing-value context and rough formal concept, Based on them, this paper employs rough concept lattice,formed by rough formal concepts and partial order relation on them,as the basic data structure for con-cept analysis and knowledge acquisition. Then a theroem is presented to describe the method of extract-ing rules from constructed rough formal concept lattice,and the semantic interpretation of discoveredrules is explained. In formal concept analysis,concept lattice as the fundamental data structure can be constructed from a formal context. However.it is required that the relation between object and feature in the formal context should be certain. For uncertain relation,this paper uses the thoughts of upper and lower approximation in rough set theory to deal with it,and gives out the corresponding definitions of missing-value context and rough formal concept. Based on them, this paper employs rough concept lattice, formed by rough formal concepts and partial order relation on them,as the basic data structure for concept analysis and knowledge acquisition. Then a theroem is presented to describe the method of extracting rules from constructed rough formal concept lattice, and the semantic interpretation of discovered rules is explained.
出处 《计算机科学》 CSCD 北大核心 2000年第9期36-39,共4页 Computer Science
基金 国家自然科学基金 国家机械发展基金
关键词 缺值背景 概念分析 知识获取 粗糙集合 数据库 Concept lattice Formal concept analysis Rough sets Knowledge discovery
  • 相关文献

参考文献12

  • 1Wille R. Restructuring lattice theory:an approach based on hierarchies of concepts. In: Rival I, ed. Dordrecht: Rei- del, 1982. 445~470
  • 2Pawlak Z. Rough Sets: Thneoretical Aspects of Reasoning about Data. Dordrecht: Kluwet Academic Publisher. 1991
  • 3Godin R,et al.Applying Concept Formation Methods to Software Reuse. International Journal of Knowledge En gineering and Software Engineering, 1995,5(1): 119~142
  • 4Carpineto C. Romano G. A Lattice Conceptual clustering system and its application to browsing rettiveal Machine Learning,1996,24: 95~122
  • 5Mineau G W.Godin R. Automatic Structuring of Knowledge Bases by Conceptual Clustering- IEEE Transactrons on Knowledge and Data Engineering, 1995.7(5):824~828
  • 6Oosthuizen G D, Rough sets and concept lattices. In: Zrarko W P.ed. Rough Sets.and Fuzzy Sets and Knowledge Discovery (RSKD93). London: Springer-Verlag. 1994. 24~31
  • 7Kent R E. Rough concept analysis. ln:Ziarko W P, ed. Rough Sets. and Fuzzy Sets and Knowledge Discovery (RSKD93). London: Springer-Veelag, 1994. Z48~255
  • 8王志海 胡可云.概念格上的粗糙集合运算与函数依赖生成[J].清华大学学报,1998,38(2):1-4.
  • 9谢志鹏.等.基于粗糙集合-最近邻的特征选取.见:99'青岛-香港国际计算机会议论文集.1999.10刘宗田.容差近似空间的广义概念格模型研究,计算机学报,1999
  • 10刘宗田.容差近似空间的广义概念格模型研究[J].计算机学报,2000,23(1):66-70. 被引量:11

二级参考文献9

  • 1王志海 胡可云.概念格上的粗糙集合运算与函数依赖生成[J].清华大学学报,1998,38(2):1-4.
  • 2欧阳为民.数据库中频繁模式的发现研究.博士学位论文[M].中国科学技术大学,1998,5..
  • 3Liu Z,Proceedings of 3rd Pacific Asia Conference,1999年,220页
  • 4王志海,清华大学学报,1998年,38卷,增2期,1页
  • 5王志海,博士学位论文,1998年
  • 6Hong J,Knowledge Discovery Databases,1991年,177页
  • 7欧阳为民,博士学位论文,1998年
  • 8王志海,胡可云,胡学钢,刘宗田,张奠成.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70. 被引量:66
  • 9刘宗田.属性最小约简的增量式算法[J].电子学报,1999,27(11):96-98. 被引量:43

共引文献25

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部