期刊文献+

一种新的知识表达模型——信度网 被引量:5

A New Model for Knowledge Representation-Belief Network
全文增补中
导出
摘要 A belief network is a new mechanism for knowledge representation based on probability the-ory. Its distinct performance in representing and reasoning about uncertainty makes it a hot researchtopic in artificial intelligence. It is now being Used in many areas. In this paper,we give a comprehensiveintroduction to a belief network,including its historic background ,principles ,the progress of its researchand development ,and some challenging problems. A belief network is a new mechanism for knowledge representation based on probability theory. Its distinct performance in representing and reasoning about uncertainty makes it a hot research topic in artificial intelligence. It is now being used in many areas. In this paper,we give a comprehensive introduction to a belief network, including its historic background ,principles ,the progress of its research and development ,and some challenging problems.
出处 《计算机科学》 CSCD 北大核心 2000年第9期40-43,共4页 Computer Science
基金 国家自然科学基金 教育部跨世纪优秀人才基金
关键词 信度网 知识表达 模型 AI, Belief network, Knowledge representation
  • 相关文献

参考文献13

  • 1Pearl J. Fusion, Propagation, and Structuring in Belief Networks. Arithcial Intelligence, 1986,29: 241~288
  • 2Cooper G R. The Computatiounal Complexty of Inference In BN. Artificial Intelligence, 1990: 42~4
  • 3Jensen F V,et al. Bayesian updating in causal probabilitistic networks by local computations. Comp. Stat. Quart, 1990(4): 269~282
  • 4Pearl J. Evidential Reasoning Using Stochastic Simulation of Causal Models. Artificial Intelligence. 1998, 32: 245~257
  • 5Hryeej T. Gibbs Sampling in Bayesian Networks. Arrifi-cial Intelligence, 1990,46: 351~383
  • 6Poole D. Probabihtie conflicts in a search algorithm for estimating postrior probabilities in Bayesian networks. Artificial Inteltigence, 1996.88: 89~100
  • 7Heckerman D. Learning Bayesian Network:The Conbination of Knowledge and Statistical Data: [Technical Report MSR-94-09].
  • 8Rissanen J. Stochastic Complexity in Sratistical Inquiry. World Scientific ,River Edge .NJ, 1989
  • 9Schwarz G. Estimating the dimension of a model,Annals of Statistics, 6:461~464
  • 10Chen J,et al. Learning belief network from data: An information thoery based approach. In Poceedings of ACM CIKM' 91

同被引文献21

  • 1许忠锡.查准率与查全率关系辨析[J].上海高校图书情报工作研究,2004,14(4):21-23. 被引量:2
  • 2许建潮,胡明.中文Web文本的特征获取与分类[J].计算机工程,2005,31(8):24-25. 被引量:24
  • 3Frank P M.Fault diagnosis in dynamic systems using analytical and knowledge based redundancy - a survey and some new results[J].Automatic, 1990,26(3):459-474.
  • 4Judea Pearl.Fusion, propagation, and structuring in belief networks[J].Artificial Intelligence, 1986,29(3):241-288.
  • 5Kirsch H,Kroschel K.Applying Bayesian networks to fault diagnosis[C].Proceedings of the Third IEEE Conference on Control Applications, 1994:895-900.
  • 6Mast T A,Reed A T, Yurkovich S,et al.Bayesian belief networks for fault identification in aircraft gas turbine engines[C]. Proceedings of the IEEE International Conference on Control Applications,1999:39-44.
  • 7Wai Lam,Segre A M.A distributed learning algorithm for Bayesian inference networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2002,14(1): 93-105.
  • 8Fusion, Pearl J. Propagation and Structuring in Belief Networks [J ]. Artificial Intelligence, 1986,29,241 - 288.
  • 9Miyamoto S. Information Retrieval Based on Fuzzy Association[J]. Fuzzy Sets and System, 1990,38(2) : 191 -205
  • 10Lee C, Lee G G. Probabilistic Information Retrieval Model for Dependency Structured Indexing Systerm Information Processing and Management [M] . SIGIR2002, Angust2002

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部