期刊文献+

THE PERTURBATION THEORY FOR THE SUMMABILITY OF SELFADJOINT OPERATORS

THE PERTURBATION THEORY FOR THE SUMMABILITY OF SELFADJOINT OPERATORS
原文传递
导出
摘要 Let(E,H,μ)be an abstract Wiener spacein the sense of L.Gross.It is proved that if u is a measurable map from E to H such that u∈W 2.1(H,μ)and there exists a constantα,0<α<1,such that either∑n‖D nu(w)‖2 Hα2 a.s.or‖u(w+h)-u(w)‖Hα‖h‖H a.s.for every h∈H and E exp108(1-α)2∑‖D n u‖H)<∞,then the measureμT-1 is equivalent toμ,where T(w)=w+u(w)for w∈E.And the explicit expression of the Radon-Nikodym derivative(cf.Theorem 2.1)is given. Let(E,H,μ)be an abstract Wiener spacein the sense of L.Gross.It is proved that if u is a measurable map from E to H such that u∈W 2.1(H,μ)and there exists a constantα,0<α<1,such that either∑n‖D nu(w)‖2 Hα2 a.s.or‖u(w+h)-u(w)‖Hα‖h‖H a.s.for every h∈H and E exp108(1-α)2∑‖D n u‖H)<∞,then the measureμT-1 is equivalent toμ,where T(w)=w+u(w)for w∈E.And the explicit expression of the Radon-Nikodym derivative(cf.Theorem 2.1)is given.
作者 ZHANG YINNAN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1997年第1期31-34,共4页 数学年刊(B辑英文版)
关键词 Gaussian measure Wiener space Measurable map Gaussian measure Wiener space Measurable map
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部