期刊文献+

(mM)^(∞)算子及 Hamilton-Jacobi方程粘性解

(mM)^(∞) operators and viscosity solutions for hamilton-Jacobi equations
全文增补中
导出
摘要 Hamilton- Jacobi方程经常出现在实际应用中 ,例如控制论 ,微分对策和经济理论 .本文构造了具有非凸通量和非凸初值的 Hamilton- Jacobi方程的粘性解 .主要思想是 :将通量分解为一个凸量加一个凹通量 ,利用新设计的算子 (m M) ∞ 和 L egendre变换 ,Hamilton- Jacobi方程的粘性解可以精确地表达 .(m M) ∞ 型解证明是 Hamilton- Jacobi方程的粘性解 .实际上我们的 (m M)∞公式是凸的 L ax- Oleinik- Hopf公式的非凸推广 . Hamilton Jacobi equations are frequently encountered in applications, e.g., in control theory, differential games, and theory of economics. construct viscosity solutions of Hamilton Jacobi equations having a nonconvex flux and a nonconvex initial value. The main idea is: decomposit flux into convex flux plus concave flux, with the help of a newly designed operator (mM) ∞ and Legendre transform, the viscosity solutions of Hamilton Jacobi equations can be exactly expressed. The (mM) ∞ type Solutions is proved to be the viscosity solutions of Hamilton Jacobi equations. In fact our ( (mM) ∞ ) formula is a nonconvex generalization of the convex Lax Oleinik Hopfs formula.
作者 董海涛
出处 《纯粹数学与应用数学》 CSCD 2000年第4期67-75,共9页 Pure and Applied Mathematics
关键词 哈密尔顿-雅可比方程 粘性解 Hamilton Jacobi equation viscosity solution
  • 相关文献

参考文献21

  • 1Arnold VI, Mathematical Methods of Classical Mechanics[M]. Springer-Verlag, 1978.
  • 2Corrias L, Falcone M, Natalini R. Numerical schemes for conservation laws via Hamilton-Jacohi equations[J]. Mathematcs of Computation,1995,64(210):555-580.
  • 3Crandall M G & Lions P L. Viscosity solutions of Hamilton-Jacobi equations[J]. Transactions of the American Mathematical Society 1983,277(1):1-42.
  • 4Crandall M G & Lions P L. Two approximations of solutions of Hamilton-Jacobi equations[J]. Mathematics of Computation, 1984,43: 1-19.
  • 5Dong Hai-ta. Researches on New Methods in Numerical Solutions for Systems of Nonlinear Hyperbolic Conservation Laws[C]. Doctoral Thesis, 1996.
  • 6Evans L C, Some min-max methods for the Hamilton-Jacobi equation[J], Indiana University Mathematics Journal, 1984,33(1).
  • 7Evans g C & Souganidis P E, Differential games and representation formulas for solutions of HamiltonJacobi-lsaacs equations[J]. Indiana University Mathematics Journal, 1984,33(5),773-797.
  • 8Harten A. High resolution schemes for hyperbolic conservation laws[J]. J. Comp. Phys. 1983,49:357-393.
  • 9Harten A & Osher S. Uniformly high order accurate non-oscillatory schemes[J]. I. SIAM J, Numer.Anal.,1987,24:279-309.
  • 10Hopf E. Generalized solutions of non-linear equations of first order[J]. J. Math. Mech., 1965,14:951-973.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部