期刊文献+

耦合Laplace方程组正解的存在性及多解性

The existence and multiplicity of positive solutions for the second-order differential systems
全文增补中
导出
摘要 利用锥理论讨论由两类 Laplace方程耦合而成的方程组的可解性 ,得到了一些正解的存在性及多解性结果 . This paper investigated differential system consists of two classes laplace equations with cone theory, acquire some existence and multiplicity results
作者 白占兵
出处 《纯粹数学与应用数学》 CSCD 2000年第4期87-91,98,共6页 Pure and Applied Mathematics
关键词 方程组 正解 equations positive solution cone
  • 相关文献

参考文献6

  • 1A. M. Fink, J. A. Gatica. Positive Solutions of Second Order Systems of B. V. P[J]. J. Math. Anal. Appl. 1993,180:93-108.
  • 2R. Y. Ma. Existence of Positive Radial Solutions for Elliptic Systems[J]. J. Math. Anal. Appl. 1996,201:35-386.
  • 3D. R. Duninger, H, Y. Wang. Existence and Multiplicity of Positive Solutions for Elliptic Systems[J].Nonl. Anal. 1997,29(9):1051-1060.
  • 4Junyu Wang. The Existence of Positive Solutions for the one-dimensional p-Laplacian[J]. Proc.Amer Math. Soci, 1997,125(8):2275-2283.
  • 5M. A. Krasnoselskii. Positive Solutions of Operator Equations[M], Noordhoff, Gronignen, 1964.
  • 6白占兵,吕海深.一维p-Laplace方程多个正解的存在性[J].纯粹数学与应用数学,1998,14(4):95-98. 被引量:1

二级参考文献4

  • 1范先令.一类二阶准线性边值问题正解的存在性[J].湘潭大学自然科学学报,(1993):205-209.
  • 2M.A.Krasnoselskii,Positive Solutions of Operator Equations.Noordhoff,Gronignen,1964.
  • 3Junyu Wang,The Existence of Positive Solutions for The One-Dimensional p-Laplacian,Proc.Amer.Math.Soci,125(8)(1997),2275-2283.
  • 4W,C.Lian,F,H.Wong and C.C,Yeh, On the Existence of Positive Solutions of Nonlinear Second Order Differential Equations,Proc,Amer.Math.Soci,124(4)(1996),1117-1126.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部