期刊文献+

肺癌标志物的多元分析模型及其在肺癌临床诊治中的应用

THE VALUES OF MUTIANALYSES MODEL OF THE 17 LUNG TUMOR MARKER IN DIAGNO SIS AND TREATMENT OF THE LUNG CANCER
全文增补中
导出
摘要 目的:研究17种肺癌标志物在肺癌临床诊治中的应用价值。方法:对肺癌患者、肺部良性疾病患者及健康对照人群各40例,测定血清中17种肺癌标志物的水平并用多元逐步回归方法进行筛选,在综合分析17种肺癌标志物间的相互作用后,淘汰价值较小的标志物,最后用判别分析的方法建立相应的判别函数式。结果:第一次共筛选出NSE、CYFRA21-1,SIL-2R、CEA、SF、CA125、SA、SOD等8个指标,用判别函数进行判断其诊断准确性为75.83%,进一步筛选,又剔出SIL-2R,SF,CA125,SA等4个影响较小的因素后其诊断准确性达到98.3%。结论:用y=0.1259(NSE)+0.3737(CYFRA21-1)+018492(CEA)+0.12993(SOD)判别函数作为肺癌的辅助诊断方法及治疗后的疗效观察指标有较高的临床应用价值。 To evaluate the diagnosis and treatment ef fect of 17 lung tumor markers in serumMethods:Three groups o fs ubjects: 40 lung cancer,40 benign lung diseases, 40 health controls, were studie dThe levels of the 17 lung tumor markers in serum were determined To select less significant lung tumor marker,17 lung tumor markers in serum were studied by mu ltivariate analysis, then the discriminating analysis models were established fo r the diagnosis and treatment prognosisResults:At first, 8 lu ng tumor markers in serum: NSE、CYFRA21.1 , SIL-2R、CEA、SF、CA125、SA、SOD w ere selected to make discriminating analysis models The accuracy rate of this mod el was 7583% , further analysis, 4 tumor marker: SIL-2R,SF,CA125,SA199 were selected again for considering as less significantThe discriminating ana lysis models which were made by NSE, CEA, CYFRA21.1, SOD reached 983% in dia gnosis accuracy rateConclusion:The discriminating analysis mo de: y=0.1259 ( NSE ) +0.3737(CYFRA21.1)+0.18492(CEA)+0.12993(SOD) for lung cancer patients had significant value in clinical practice for early diagnosis a nd prognosis However, further studies with big examples are required to confir med its value
出处 《广西医学院学报》 2000年第6期959-963,共5页
关键词 肺癌 标志物 SF CYFRA21-1 CAL25 SIL-2R 临床诊治 筛选 淘汰 SOD lung cancer tumor marker multivariate analysis m ath model
  • 相关文献

参考文献10

  • 1[2]Sozzi G,Musso K,Ratcliffe C,et al.Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients:a prospect for early diagnosis. Clin Cancer Res,1999,5(10):2689-2692.
  • 2王德华,廖松林,高子芬,张惠信,白逸秋,许翔.非小细胞肺癌的预后因素及多变量分析[J].中华医学杂志,1997,77(7):497-500. 被引量:6
  • 3[4]Boher JM, Pujol JL,Grenier J,et al.Markov model and markers of small cell lung cancer:assessing the influence of reversible serum NSE,CYFRA21-1 and TPS levels on prognosis.Br J Cancer,1999,79(9-10):1419-1427.
  • 4[5]Kim YC,Park KO,Kern JA,et al.The interactive effect of Ras,HER2,P53 and Bcl-2 express in predicting the survival of non-small cell lung cancer patients. Lung Cancer,1998,22(3):181-190.
  • 5马兰,艾桂萍,许佩珉,高德芹.CYFRA 21-1等肿瘤标记物在肺癌诊断中的应用[J].中华肿瘤杂志,1997,19(4):317-318. 被引量:10
  • 6[7]Kelly K,Mikhaeel-Kamel N.Medical treatment of lung cancer.J Thorac Imaging,1999,14(4):257-265.
  • 7李坚,赵夕武,束国荣,张蓝石,李龙.四项肿瘤标志测定对肺癌诊断和病情评估的临床价值[J].肿瘤防治研究,1999,26(4):278-280. 被引量:15
  • 8[9]Stieber P,Zimmermann A,Reinmiedl J,et al. CYFRA21-1 in the early diagnosis of recurrent disease in non-small cell lung carcinomas (NSCLC). Anticancer Res,1999,19(4A):2865-8.
  • 9[10]Fracchia A,Ubbiali A,EI Bitar D,et al.Acomparative study on ferritin concentration in serum and bilateral bronchoalveolar lavage fluid of patients with peripheral lung cancer versus control subjects.Oncology,1999,56(3):181-8.
  • 10屠春林,张敦华,曾亮,顾伟光,乔玉磊,陈可靖.血清CYFRA21—1、CEA、NSE联合测定在肺癌诊断中的价值[J].上海医科大学学报,1997,24(3):238-238. 被引量:1

二级参考文献1

  • 1徐忠,上海医学,1992年,15卷,75页

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部