摘要
本文提出了一种新的基于特征可分性的归纳学习算法(SBI)。与现有各种归纳学习算法相比,该方法直接从特征对不同类型的可分性出发,建立可分性判据,然后形成决策树,可对多种概念进行判别。SBI算法具有直观且计算简便等优点。本文以实例表明了SBI算法的有效性。
A new separability-based inductive learning algorithm is proposed in this paper. The algorithm is different from existing inductive learning algorithms. Starting directly from the separability of features for different classes, building a separability criterion, then forming a decision tree, the algorithm can classify multiclass concepts. The algorithm is intuitive, simple, and convenient for computation. Its effectineness is illustrated by an example in this paper.
出处
《自动化学报》
EI
CSCD
北大核心
1993年第3期328-331,共4页
Acta Automatica Sinica
关键词
归纳学习
特征
可分性
算法
Induotive learning
feature
separability criterion
decision tree.