摘要
本文讨论一类生化反应模型dx/dt=1-x^ny^2,dy/dt=α(x^ny^2-y)的闭轨存在性,其中n∈N,x≥0,y≥0,α>0.我们将具体指出当α在一定条件下方程无闭轨或者从Hopf分枝中产生稳定的极限环.
In this paper, the existence of closed orbits for the bio-chemical reaction model is discussed, where n is a positive integer and x>0, y>0, a>0. We also point out that .the equation has no closed orbits or has stable limit cycles arising from Hopf bifurcations under a certain condition of a.
出处
《应用数学和力学》
CSCD
北大核心
1993年第6期559-566,共8页
Applied Mathematics and Mechanics
关键词
闭轨
生化反应模型
微分方程
closed orbit, limit cycle, fine focus, Hopf bifurcation