摘要
By means of Zp-index and its pseudo-index, we study the existence of multiple subharmonic solutions with prescribed minimal period for nonautonomous su-perquadratic Hamiltonian system Jz = H2(z(t),t),z(0) = z(2πp) where H(z, t + 2πp) = H(z, t), t ∈ R, z∈ R2N. Under hypotheses H1-H4, there are at least kN distinct soultions with minimal period 2-πp.
本文利用了z_p^-指标和伪指标研究了非自治超二次Hamilton系统Jz=H_z(z(t),t),z(0)=z(2πp)次调和多重最小周期解,其中H(z,t+2πp)=H(z,t),t∈R^N,z∈R^2N.在假设H_1-H_4条件下,系统至少存在kN个不同的以2πp为最小周期的解.