期刊文献+

A Proof of 3-dimensional Poincaré Conjecture

3维Poincaré猜想的一个证明(英文)
下载PDF
导出
摘要 A Heegaard splitting of an orientable closed cnnected 3-manifold M is a closed connected surface F → M such that M is divided into two handlebodies. Let g(M) be the minimal genus of all such surfaces. Let r(M) be the rank of π1(M). Then r(M) ≤ g(M). Waldhausen ([3] p.320) asked whether r(M) = g(M) is true for all M. But Boileau and Zieschang gave a negative answer to the question by describing some Seifert manifold M with 2 = r(M) < g(M) = 3 ([4]). In this paper, however, we shall prove that if π1(M) is trivial, then g(M) = r(M), thus M has a Heegaard splitting with genus 0, i.e. M is a 3-sphere. This is the assertion which Poincare' conjectured in 1904. There are to approaches to the Poincare' conjecture, but here we shall work on it through its Heegaard splitting. 设M是一个连通闭3维流形而且π_1(M)
作者 何伯和
机构地区 吉林大学数学系
出处 《Journal of Mathematical Research and Exposition》 CSCD 1993年第2期241-244,共4页 数学研究与评论(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部