期刊文献+

一类既为右本原又为左本原的加法范畴

下载PDF
导出
摘要 在环论中,Bergman给出了右本原环不是左本原环的例子。由于加法范畴的一部分结构是环,所以,在一般情况下,右本原加法范畴并不是左本原加法范畴.由[1]知如果R是有极小单侧理想的环,则R是右本原环当且仅当R为左本原环。这一结果并不能完全平行地推广到加法范畴中,下面我们进行讨论。若A为加法范畴,记A=_αA_β,其中∑为加法范畴A的对象类,A_β表示Hom(α,β),α,β∈∑,有(Hom(α,β),+,_(?)0)为Abel群,而(Hom(α·α),+,·_α0,_α1)为一个环。有关加法范畴的左右理想,子范畴,本原加法范畴等定义见[2]。引理1 设A=_αA_β为右本原加法范畴,B=_αB_β为A的非零右理想,C=_αC_β为A一个非零子范畴,则B·C有意义且B·C≠0。
作者 张淑华
出处 《曲阜师范大学学报(自然科学版)》 CAS 1993年第3期5-5,18,共2页 Journal of Qufu Normal University(Natural Science)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部