摘要
讨论 n 阶非线性泛函微分方程x^(n)(t)+p(t)k(t,x(t),x^(n-1)(t))+q(t)f(x(σ(t)))=0 (1)解的振动性,其中 n 为偶数,在一定条件下,建立了方程(1)的三个振动性定理,推广和改进了已有的结果.
In this paper we discuss the oscillation of solutions of the nth order nonlinear func-tional differential equationx^((n))+p(t)k(t,x,x^((n-1)))x^((n-1))+q(t)f(x(σ(t)))=0,t∈[t_0,∞) ,where n is even.Threenew theorems are established,and our results generalize and improve some known results.
关键词
泛函微分方程
振动性
functional differential equation
oscillation