具耗散项拟线性双曲型方程组解的奇性形成与特征包络
出处
《华北水利水电学院学报》
1993年第1期38-41,共4页
North China Institute of Water Conservancy and Hydroelectric Power
-
1李大治.拟线性双曲组解的奇性形成和特征包络[J].应用数学,1989,2(1):113-115. 被引量:1
-
2李大潜.拟线性双曲型方程(组)的精确能控性[J].高校应用数学学报(A辑),2005,20(2):127-146. 被引量:2
-
3宋娈娈.拟线性双曲型方程组解的整体存在性[J].高师理科学刊,2014,34(6):1-6. 被引量:1
-
4叶彩儿.一类无散射偏微分方程组的变换和精确解[J].浙江林学院学报,2003,20(1):95-97. 被引量:5
-
5LI TA-TSIEN (LI DAQIAN), JIN YI Department of Mathematics, Fudan University, Shanghai 200433, China..SEMI-GLOBAL C^1 SOLUTION TO THE MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS[J].Chinese Annals of Mathematics,Series B,2001,22(3):325-336. 被引量:31
-
6LIU Fa-gui ZHANG Yuan-zhang.Quasilinear Hyperbolic Conservation Laws with Relaxation[J].Chinese Quarterly Journal of Mathematics,2007,22(1):143-154.
-
7KONG DEXING (Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200030, China.).LIFE-SPAN OF CLASSICAL SOLUTIONSTO QUASILINEAR HYPERBOLIC SYSTEMSWITH SLOW DECAY INITIAL DATALIFE-SPAN OF CLASSICAL SOLUTIONSTO QUASILINEAR HYPERBOLIC SYSTEMSWITH SLOW DECAY INITIAL DATA[J].Chinese Annals of Mathematics,Series B,2000,21(4):413-440. 被引量:14
-
8龚留俊.高中数学研究性学习活动的案例分析[J].数学之友,2008,22(17):48-48.
-
9叶彩儿.一类无散射耦合的Korteweg—de Vries方程组的约化和精确解[J].绍兴文理学院学报(自然科学版),2002,22(3):25-28.
-
10许刚,杨艳军.外球区域三维超音速流的整体存在性[J].南京大学学报(数学半年刊),2015,32(1):104-128.
;