摘要
本文以二次式来逼近每个时间步中的激励变化,给出了计算Duhamel积分的递推公式。用线性插值时,就是熟知的Nigam—Jennings算法。分析了算法的传递函数误差,并计算了几个数值例子,从而阐明本文推荐的二次插值算法优于Nigam—Jennings算法。
In this paper,the excitation in each time step is approximated by quadratic function,recurrent formulae to compute Duhamel's integrals are derived. The well-known Nigam-Jennings algorithm corresponds to linear interpolation. The transfer function errors are analyzed ,and several numerical examples are presented. It is clarified,that the quadratic interpolation algorithm is superior to the conventional Nigam-Jennings algorithm.
关键词
动向应
模态叠加
Duhamel积分
dynamic response
mode superposition
step-by-step integration
Duhamel's integral