摘要
本文利用多重付立叶(Fourier)变换证明亨克尔(Hankel)变换的反演定理,同时,把K维空间的射线函数(仅依赖于到原点距离的函数)的付立叶变换,归结为一维空间的亨克尔交换,这样,由K元函数的付立叶交换成立的定理,就可推出一元函数的亨克尔变换相应的定理.
In this peper, we prove the inversion theory of Hankel transforms by using of multiple Fourier transforms, and in the meantime we can use the Fourier transforms of ray function in k -dimensional Spacs, sum up to the Hankel transforms of one-dimensional Space, thus by the Fourier transforms theory of k-variable function we can get the corresponding theory of Hankel transforms on one-variable function.
出处
《安徽大学学报(自然科学版)》
CAS
1994年第4期11-15,共5页
Journal of Anhui University(Natural Science Edition)
关键词
傅立叶变换
亨克尔变换
反演定理
multiple Fourier transforms, Hankel transforms, inversion theory