摘要
利用数学分析中在有界闭区域上二元连续函数的性质,首先证明f(z)=z~n+b_1z^(n-1)+…+b_nz_0∈C,使然后用反证法证明z_0就是一根。
In this paper,using the property of continuous functions of two variables on bounded closed domains in mathematical analysis,we prove that for f(z)=zn+b1zn-1+...+bn-1,z+bn there exist z0 ∈C such that |f(z0)|=|f(z)|, then by the proof by contradiction,it is proved that z0 is the root of f(z) =0.
出处
《鞍山钢铁学院学报》
1994年第3期52-54,共3页
Journal of Anshan Institute of Iron and Steel Technology
关键词
复数域
根
连续函数
有界闭区域
最小值
omplex field, root,continuous function, bounded closed domain,minimum