摘要
本文证明了如下结果:定理1设X是Banach空间,则:(Ⅰ)若X是Lω─UR,则X是LFNUC;(Ⅱ)若X是严格凸的LFNUC空间,则X是LωR空间。定理2设X是Banach空间,则:(1)若X是ω─UR,则X是FNUC;(Ⅲ)若X是严格凸的FNUC空间,则X是ωR空间。定理3:若X是UKK空间且有BSP;则X是FNUC空间。
In this paper. we prove the following results:(Ⅰ)If X os Lω UR(resp. ω-UR),then X is LFNUC:(resp.FNUC);(Ⅱ)If X is strictly convex LFNUC(resp.FNUC),then X is LωR(resp.ωR);(Ⅲ)If X is UKK and has BSP,then X is FNUC.
关键词
巴拿赫空间
完全近一致凸
LFNUC
Fully nearly uniform convex,locally fully nearly uniform convex,uniform-ly Kadec-Klee property. Banach-Saks property.