期刊文献+

拉格朗日反分析方法误差分析 被引量:1

ERROR ANALYSIS FOR LAGRANGIAN ANALYSIS METHOD
下载PDF
导出
摘要 系统地讨论了路径线法及曲面拟合法误差发展。反分析计算误差可分成截断误差及增殖误差两部分,截断误差及增殖误差受测量量计数目及量计间距影响,增加量计数,减小量计间距可以减小截断误差,但不利于控制增殖误差。反分析计算误差发展可分为三个过程:开始,计算误差主要来源于截断误差;其后,误差受截断误差和增殖误差共同影响;最后,增殖误差是主要的。无论是曲面拟合法还是路径线法,各量计线上增殖误差可用时间多项式函数来表示,且多项式最高幂次数与量计线数目有关。 Error development is systematically discussed Of path-line and surface-fittingmethod. Error of inverse analysis can be decomposed into two parts,truncation error and propoga-tion error. Both truncation and propagation error arc effected by the number of gages and distancebetween gages,increasing the number and decreasing distance can reduce trunction error, but it isdisadvantagous to control propagation error.Error development of inverse analysis can be dividedinto three steps. First, trunction error takes major part in calcuated error.Second, both of themhave the same influence on calculated error.Finally,propagation error is very important.Propagation error for each gage can be expressed as polynomial of time and the highest power of poly-nomial is m-1,which m is the number of gages.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 1994年第4期332-341,共10页 Explosion and Shock Waves
基金 中国工程物理研究院流体物理研究所冲击波与爆轰物理重点实验室资助
关键词 拉格朗日反分析 误差 应力波 trunction error,propagation error,calculated error,surface-fitting,mini-domain,path-line,gage-line
  • 相关文献

参考文献2

二级参考文献5

  • 1柴华友,中国科学技术大学学报,1990年,20卷,专辑,48页
  • 2柴华友,1989年
  • 3唐志平,J Appl Phys,1988年,64卷,4期,1827页
  • 4Li X L,1986年
  • 5尹泽勇,有限元法.上,1985年

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部