摘要
记{X_n,n≥1}为独立冈分布的随机变量列。以X_(n.1)≤…≤X_(n,n)记X_1,…,X_n的次序统计量。作者将陆续给出3篇文章来讨论和S_n(l_n,r_n)当n→∞时的渐近分布.这些文章所使用的方法是统一旦初等的。作为上述和的特例,本文将改进文献中关于截断和及修正截断和的某些结果,还将讨论一类新的截断和──边项次序统计量的和。本文先列举了所要讨论的问题和给出一般性的引理,然后讨论当l_n≡l和n—r_n+l≡r时上述和在适当标准化以后的渐近分布。
Let(X_n,n≥1}be i.i.d. random variables and for each n≥1,denote X_(n,1)≤…≤X_(n,n)as the order statistics of X_1,…,X_n.We will devote three papers to discussing asymptotic distributions of sums where l_n and r_n are integers satisfying 1≤l_n≤r_n≤n and both p_n and q_n are nonnegative real numbers,The methods we used here are unified and elemen-tary. As special cases of such sums,we improve some results on trimmed sums and winsorized sums ap-peared in literature and discuss a new type of trimn1ed sums-sums of intermediate order statistics.At first,in present paper,we list the problems we will discuss and give some lemmas for general use. Then the asymptotic distributions of the normalized sums {S_n(l_n,r_n) β_n/α_n,n≥1}are discussed for the cases of l_n≡l and n r_n+1≡r.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1994年第3期323-338,共16页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金
博士类基金
关键词
截断和
随机紧
概率论
渐近分布
Trimmed sums
winsorized sums
stochastic compactness
asymptotic normality