摘要
本文从时变场的场方程出发,分别给出带电粒子的拉格朗日函数及哈密顿函数.依据哈密顿函数 H 不含有某个广坐标 q_时,广义动量 P_守恒,对带电粒子在螺绕环磁场中的漂移问题进行了讨论.可看到处理该问题时,能避免用近似法求解微分方程,而得到较为满意的结果.
In this paper,we start from field function of field time-variation meanwhile give the Lagrangion function of changed particles,and the Hamiltan function of charged particles individually.According to the Hamilton function H,without a certain generalized coordinate q_β,that is generalized momentum P_βis conservotive. Moreover,we have made an exhaustive study and deeply,discuss about the drift prob- lem of charzed,particles.In the toroid coil magnetil.field so that we can obtain a satisfac- tory result.Which usually use an approximate method to solve differential equation with complicated calculations.
出处
《北京机械工业学院学报》
1994年第1期102-109,共8页
Journal of Beijing Institute of Machinery
关键词
拉格朗日函数
动量守恒
带电粒子
Lagrangion Function
Law of Conservation of Generalized Momentum
Hamiltonian Canonical Equation
Charged Partide
Toroid Coil
Magnetic Vector Potential
Magnetic Focusing