期刊文献+

带电粒子的Hamilton函数及广义动量守恒原理的应用

Application on the Hamilton Function of Chorrged Particles and the Law of Conservation of Generalized Momentum
下载PDF
导出
摘要 本文从时变场的场方程出发,分别给出带电粒子的拉格朗日函数及哈密顿函数.依据哈密顿函数 H 不含有某个广坐标 q_时,广义动量 P_守恒,对带电粒子在螺绕环磁场中的漂移问题进行了讨论.可看到处理该问题时,能避免用近似法求解微分方程,而得到较为满意的结果. In this paper,we start from field function of field time-variation meanwhile give the Lagrangion function of changed particles,and the Hamiltan function of charged particles individually.According to the Hamilton function H,without a certain generalized coordinate q_β,that is generalized momentum P_βis conservotive. Moreover,we have made an exhaustive study and deeply,discuss about the drift prob- lem of charzed,particles.In the toroid coil magnetil.field so that we can obtain a satisfac- tory result.Which usually use an approximate method to solve differential equation with complicated calculations.
作者 张昆生
出处 《北京机械工业学院学报》 1994年第1期102-109,共8页 Journal of Beijing Institute of Machinery
关键词 拉格朗日函数 动量守恒 带电粒子 Lagrangion Function Law of Conservation of Generalized Momentum Hamiltonian Canonical Equation Charged Partide Toroid Coil Magnetic Vector Potential Magnetic Focusing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部