摘要
利用上、下解的方法讨论三阶非线性微分方程ym=f(x,y,y′,y″)满足线性边界条件:y(j)(a)=α,y(b)=β,y(k)c=γ(其中j,k∈{0,1,2},且(j,k)≠(2,2)的三点边值问题解的存在性.同时把线性边界条件推广为非线性边界条件 它们分别是赵为礼等文献的推广.
The upper and lower solution method is used to discuss the existence of solutions of three-point boundary value problare for the third order nonlinear differential equation satisfying the following linear boundary conditions and where. Asa generalization of the results given by Zhao Weili et al. Corresponding theorems for the following nonlinear boundary conditions are also given.
出处
《北京理工大学学报》
EI
CAS
CSCD
1994年第3期228-233,共6页
Transactions of Beijing Institute of Technology
关键词
常微分方程
边值问题
存在性
ordinary differential equations
boundary value problems/upper and lower solutions
Banach fixed point theorem