摘要
设f∈(Q_n),n∈N且S_R ̄(n-1)/2(f)是f的临界阶Bochner─Riesz平均.求得了(H,q)逼近的阶的估计:其中ω_2表示二阶连续模,q>0且c是常数.同时研究了这类逼近的饱和问题.
Let f∈C(Qn), n∈N and S_R ̄(n-1)/2 (f) be the Bochner-Riesz means of critical order of f. Get the estimate for the degree of (H, q) approximation:where ω2 denotes the second modulus of continuity, q>0 and c is a constant. The saturation problem of this kind of approximation is also investigated.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
1994年第2期163-169,共7页
Journal of Beijing Normal University(Natural Science)
关键词
逼近
饱和
B-R平均
哈代求和
strong approximation
Bochner-Riesz means
saturation