摘要
继续文献[5]工作,将非负矩阵的素性指标估计推广到多面体锥上的素性算子。通过对多面体锥上非负算子有向图的引入,讨论了多面体锥上非负算子的有向图G(A)与K_m-不可约算子,K_m-素性算子的关系,对非负矩阵素性指标的一些结论进行了推广,主要结果为:若A∈Ⅱ(K_m)为素性算子,且G(A)是强连接的,则对A的素性指标估计有γ(A)≤m+s(m-2),其中s是G(A)中最小简单闭路的长度。这样使得文献[1]中结论成为本文的一个特殊情况。
Extend the estimations of the index of primitivity of a nonnegative matrix to aprimitive operator over a polyhedral cone. We introduce the directed graph of K_m-nonnega-tive operator,and discuss the relations among the directed graph,K_m-irreducible operatorand K_M-primitive operator. Our main result is that if A ∈Ⅱ(K_m)is primitive operator,andG(A)is strong connected, hen γ(A)≤(m+s(m-2),where s is the shortest simple circuitin G(A).Thus,the result of dulmage and Mendelsohn is a special case.
出处
《北京邮电大学学报》
EI
CAS
CSCD
1994年第3期95-98,共4页
Journal of Beijing University of Posts and Telecommunications
关键词
非负矩阵
可约矩阵
素性算子
non-negative matrices
reducible matrices/primitive operator