期刊文献+

陶瓷基复合材料(SiC_W/Y—TZP)在循环压应力下的疲劳裂纹扩展 被引量:1

CRACK PROPAGATION IN CERAMIC MATRIX COMPOSITE UNDER CYCLIC LOADS
下载PDF
导出
摘要 研究了碳化硅晶须(SiCw)增强,Y2O3稳定的ZrO2四方多晶体(Y—TZP)复合材料(SiCw/Y—TZP)在循坏压应力作用下的疲劳特性.单边缺口弯曲试样在纵向循环压应力作用了缺口根部产生垂直于压应力的Ⅰ型裂纹.类似于金属材料,在室温下循环压应力导致Ⅰ型裂纹的稳定扩展.压应力在缺口权部产生的不可逆损伤区在循环卸载过程中形成较大的残余拉伸应力场,使裂纹萌生并长大.同时,裂纹面产生的碎粒及晶须拔出导致裂纹闭合使裂纹最终停止扩展. The fatigue behavior of SiCw / 3Y-TZP under cyclic compressive load has been investigated.The application of cyclic compressive stresses used to single notched samples of SiCw / 3Y-TZP can lead to stable mode I crack growth along the plane of the notch in a direction normal to the far-field compression axis. The rate of crack growth is faster at the beginning of test, and then slow with an increase in cycles number. At last, the growth arrests completely. The amplitude of the very first compression cycle plays a decisive role in influencing the extent of the residual tensile field and the total crack growth distance as there is no contact in the wake of the notch-tip. The residual tensile siresses generated by irreversible damage ahead of the notch-tip during compression loading cause the crack nucleation and growth in unloading process.Obeservations of whisker pull-out on the fatigue fracture surfaces are indicative of the locally tensile separation mode. The accumulation of debris within the cracks and the pull-out of whiskers causes the progressive development of closure in the wake of the advancing crack-tip leading to crack arrest.
机构地区 华中理工大学
出处 《材料研究学报》 EI CAS CSCD 1994年第5期473-476,共4页 Chinese Journal of Materials Research
关键词 裂纹扩展 疲劳机理 陶瓷复合材料 SiCw / 3Y-TZP, cyclic compression fatigue, crack growth, mechanism of fatigue.
  • 相关文献

参考文献2

  • 1张玉峰,硅酸盐学报,1992年,20卷,6期,192页
  • 2Chen I W,J Am Ceram Soc,1986年,69卷,181页

同被引文献26

  • 1梁开明,顾扣芬,顾守仁,孙传水.ZTA陶瓷ZrO_2的韧化机制与断裂特征[J].硅酸盐学报,1995,23(5):477-487. 被引量:28
  • 2熊焰,傅正义,王玉成.放电等离子烧结制备透明AlN陶瓷[J].材料研究学报,2005,19(5):555-560. 被引量:7
  • 3K.Tajima, H.J.Hwang, M.Sando, Electric-field-induced crack growth bahavior in PZT/Al2O3 composites, J. Am. Ceram. Soc., 83,651(2000)
  • 4K.B.Alexander, P.F.Becher, B.Shirley, grain growth kinetics in alumina-zirconia (CeZTA) composites. J. Am. Ceram. Soc., 77, 939(1994)
  • 5K.J.Niihara, New design concept of structural ceramics: ceramic nano-composites. J. Am. Ceram. Soc., 75, 2363(1992)
  • 6T.Fett, D.Munz, J.Seidel, M.Stech, J.Rodel, Correlation between long and short crack R-curve in alumina using the crack opening displacement and fracture mechanical weight function approach, J. Am. Ceram. Soc., 79, 1189(1996)
  • 7C.J.Gilbert, J.J.Cao, L.C.De Jonghe, R.O.Ritchie, Crackgrowth resistance-cuvre behavior in silicon carbide: small versus long cracks, J. Am. Ceram. Soc., 80, 2253(1997)
  • 8T.Fett, Evaluation of the bridging relation from crackopening displacement measurements by use of the weight function, J. Am. Ceram. Soc., 78, 945(1995)
  • 9M.Zenotchkine, R.Shuba, J.S.Kim, I.W.Chen, R-curve behavior of in situ toughened α-sialon ceramics, J. Am. Ceram. Soc., 84, 884(2001)
  • 10Y.L.Wang, U.Anandakumar, R.N.Singh, Effect of fiber bridging stress on the fracture resistance of silicon-carbidefiber/zircon composites, J. Am. Ceram. Soc., 83, 1207(2000)

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部