摘要
考虑以第一类Chebyshev多项式的零点为插值结点的扩展的Hermite算子,在实轴上逼近无界函数,得到收敛阶为O(Ω ̄(-1)(lnn)lnn/n);同时考虑了该算子的导数在实轴上逼近无界函数的导数,得到收敛阶为O(Ω ̄(-1)(lnn)(lnn) ̄2/n).
The extended Hermite interpolation operator,based on the nodes which are the zeros of first Chebyshev polynomial,is considered.This operator approxi-mates the unbounded function in the real axis,its convergence order is O(Ω ̄(-1)(lnn)lnn/n);the derivative of this operator approximates the deriva-tive of unbounded function in the real axis, its convergence order is O(Ω ̄(-1)(lnn)(lnn) ̄2/n)
出处
《长春邮电学院学报》
1994年第2期43-46,共4页
Journal of Changchun Post and Telecommunication Institute
关键词
插值
逼近
收敛阶
Hermite算子
interpolation
approximation
derivative
convergence order