摘要
线性赋范空间理论中的Helly定理的证明一般都是借助于深刻的开映射定理和线性泛函的Hahn—Banach扩张定理(几何形式),而且,任意>0的意义是不明确的.文中给出Helly定理一个简单、初等的证明(仅用到商空间的概念).它具有显明的几何特征而且澄清了任意>0的几何意义.
in general, the proof of the Helly's theorem in the theory of normed linear spaces is based on the deeper' open mapping theorem' and the 'Hahn-Banach's extension theorem (in geometrical version', and the meaning of the arbitary 0 is indistinct. This artical gives the Helly' theorem a simple-and primary proof (use only the notion of guotient spaces),which has clean geometrical character and clearifies the geometrieal meaning of arbitary .
关键词
Helly定理
赋范空间
商空间
Helly's theorem
Quotient space:Normed linear space.