摘要
本文证明了一维布朗运动样本图的一条维数性质,即如果X:[0,∞]→R是布朗运动,则除去一零概率集以外,对任意集合,X在F+t上的图GraphX(F+t)的Hausdorff维数dimHGraphX(F+t)=min(2dimHF,dimMF)对几乎所有的t>0成立.
In this paper,We prove a dimensional property of the sample graph of 1-dimensional Brownian motion,i. e,let X be 1-dimensional Brownian motion,then except a set with probability 0,for each ,dimHGraphX (F+t ) =1,min (2dimHF,dimHF) for a.et>0.
出处
《长沙铁道学院学报》
CSCD
1994年第4期82-86,共5页
Journal of Changsha Railway University