期刊文献+

对称不稳定的非线性问题和对称型重力惯性波的非线性周期解 被引量:2

The Nonlinear Problem of Symmetric Instability and the Periodic Solution of Symmetric Inertia-Gravitational Wave
下载PDF
导出
摘要 本文利用密度的空间分布不均匀性引入非线性项,从准动量无辐散模式出发导出了一个自治的二阶非线性系统,应用这个系统讨论了非线性项对对称不稳定以及对称型重力惯性波非线性周期解的作用。从本系统的一次近似系统可得到类似Hoskins于1974年得到的结论,同样可导出对称不稳定的位涡判据。由于本系统是一有限次的非线性系统,故应用Poincare形式级数法可证明非线性周期解的存在性,并可求得周期解的一系列近似解。 In this paper, the nonlinear terms are introduced by means of the nonhomogeneous spatial distri-bution of density. An autonomous nonlinear system is derived from the moment nondivergent model.With this system we discuss the effect of nonlinear tCrms on the symmetric instability and symmetric pe-riodic solution. The conclusion obtained from its first-order approximation systom is similar to thatproposed by Hoskins in l974, and the potential vorticity criterion of symmetric instability is also ob-tained. By the Poincare series method, we prove the existence of the nonlinear periodic solution becausethis nonlinear system is a limitod order one. A series of approximate periodic solutions are alsoobtained.
作者 赵瑞星
出处 《大气科学》 CSCD 北大核心 1994年第4期437-441,共5页 Chinese Journal of Atmospheric Sciences
关键词 对称不稳定 非线性 重力惯性波 symmetric instability nonlinear, periodic solution Poincare series method diabatic heating
  • 相关文献

参考文献3

二级参考文献6

  • 1赵瑞星,中国科大研究生院学报,1989年,6卷,1期,53页
  • 2刘式达,力学学报,1984年,16卷,2期,10页
  • 3刘式达,气象学报,1984年,42卷,1期,24页
  • 4刘式达,气象学报,1982年,40卷,3期,279页
  • 5张锦炎,常微分方程几何理论与分支问题,1981年
  • 6张可苏,中国科学,1980年,3期

共引文献4

同被引文献21

  • 1周伟灿,邹兰军.Liénard型方程周期解的存在性[J].南京气象学院学报,2005,28(5):657-661. 被引量:3
  • 2李维国,张丹青.用微分连续法求解Newton运动方程[J].石油大学学报(自然科学版),1996,20(5):100-104. 被引量:1
  • 3奥特加JM 莱因博尔特WC 朱季纳 译.多元非线性方程组迭代解法[M].科学出版社,1983..
  • 4Lassoued L. Periodic solutions of a second order superquadratic systems with a change of sign in the potential[J]. J Diff Equs, 1991,93:1-18
  • 5Gossez J P, Omari P. Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance[J]. 1991,94:67-82
  • 6Nieto J J. Nonlinear second-order periodic boundary value problems[J]. J Math Anal Appl, 1988,130:22-27
  • 7Shen Zuhe. On the periodic solution to the Newtonian equation of motion[J]. Nonlinear Analysis, TMA,1989,13(2):145-149
  • 8Shen Zuhe, Wolfe M A. On the existence of periodic solutions of periodically perturbed conservative systems[J]. J Math Anal Appl, 1990,153(1):78-83
  • 9FengYanqing ShenZuhe.An existence theorem for periodically perturbed conservative systems[J].南京大学学报:数学半年刊,2004,21(2):206-212.
  • 10Adams R A. Sobolev Space[M]. New York: Academic Press, 1975

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部