期刊文献+

应用新的聚类技术加速B-P网络的收敛过程

Accelerating the convergence of B-P network by using a new cluster technique
下载PDF
导出
摘要 B-P网络在模式识别技术中识别效果好,应用较广泛,但通过模式样本直接对网络权训练,收敛过程太慢。就模式识别的软、硬分类问题,提出基于新的聚类方法条件下进行网络权的训练,收敛速度较快,可收事半功倍之效。 -P network has very high efficiency of recognition and has been widely used. But usually ,the pro-cess of the convergence is very slow if the weights of the network are directly trained through the patternsamples. In this paper,a procedure based on a new cluster technique is proposed to train the weights ofthe network for hard or soft classification problems of pattern recognition,and the convergence process isaccelerated.
出处 《第一军医大学学报》 CSCD 1994年第3期198-200,共3页 Journal of First Military Medical University
关键词 神经网络 人工智能 模式识别 计算机应用 neural network artifical intelligence pattern recognition sample weight computer
  • 相关文献

参考文献6

二级参考文献1

  • 1陈武凡,1990年

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部