摘要
本文用群论的方法研究了某些理想双口变换器集合(级联)的群特性,结果表明,RO(2)(变标器)、SC(2)(变标器)、旋转器和反映器构成的集合RR(2)、变标器和有源回转器构成的集合SG2(2)构成群。借助于对不变类变换器的分类,可将上述结果归结为一个定理。最后研究了2n端口变换器集合RO(2n)(旋转器)、RF(2n)(反映器)、SC(2n)(变标器)及RR(2n)(旋转器与反映器构成的集合)的群特性,结果表明,RO(2n)、SC(2n)、RR(2n)也构成群。
Group characters in the set (cascade connection) of some ideal two-port tranformation are studied by the method of group theory in the paper. The result show that the sets (Rotator) RO(2)、(Scalor)SC (2)、the sets RR (2) of all rotators and all reflectors、the set SG2 (2) of all scalors and all active gyrators form group. Under the help of classification of antimutators, the above results are summarized to a theorem.Finally,the set (Rotator) RO (2n)、(Reflector) RF (2n)、(Scalor) SC (2n) and RR (2n) [RO (2n)∪(2n)]of 2n-port trafisformation are studied. The results show that the set RO (2n)、SC (2n)、RR (2n) form group.
出处
《电工技术学报》
EI
CSCD
北大核心
1994年第1期61-64,共4页
Transactions of China Electrotechnical Society
关键词
变换器
群特性
集合
Group Ideal two-port transformation 2n-port transformation Set