摘要
本文讨论了一类广义非正态时间序列模型——季节性新指数自回归模型SEAR(1),利用升维的方法将其化为一个随机系数的平稳自回归模型,在此基础上给出了模型参数的相容估计。
This paper discussed a type of generalized non-normal time series models. It shows that SEAR (1) model is equivalent, to multi-dimensional stationary AR (1) model with random coefficients. The estimations of parameters of SEAR (1) are given with the aid of AR (1) model.
出处
《石油大学学报(自然科学版)》
CSCD
1989年第6期86-92,共7页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
SEAR
自回归模型
升维
时间序列
Autoregressive model
Auto-covariance function
Consistent es timate