摘要
本文提出一种用于大类别模式识别系统的改进的自组织聚类方法.采用这种方法把3755种多体印刷汉字聚类为几千个子集.聚类正确率优于98%.
This paper proposes a new clustering method for Chinese character recognition system using ANN. By use of this clustering technique,the large Chinese character set of 3755 characters can be divided into many small subsets with accuracy higher than 98%.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1994年第5期1-8,共8页
Acta Electronica Sinica
基金
中国自然科学基金
关键词
神经网络
汉字识别
自组织聚类法
Clustering
Neural networks
Chinese character recognition