摘要
研究了一种随机过程──广义随机Sierpinski地毯的组态问题,证明了随着保留概率从0到1变化.此随机过程经过几个不同的相位.同时给出了各相位间临界概率的估计.
Considers the combinational state of a kind of random processes. i. e. the extended random Sierpinskicarpet. It is proved that the process has past through several different phases as its parameter increases from 0 to 1.Critical probabilities between different phases are also estimated.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
1994年第1期10-14,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金
关键词
临界概率
概率论
随机过程
Bernoulli random substitution
critical probability
open (or closed) level-n square