摘要
设Mn是2n+1维佐佐木空间型N(2n+1)(C)中的n维伪脐积分子流形.本文获得了两个积分不等式及Mn为全测地的一个充分条件.
Let M be an n-dimensional pseudo-umbilical integral submanifold in (2n+1)dimensionalSasakian space form,we obtain two integral inequalities and a sufficient condition under which M is totallygeodesic.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
1994年第6期641-645,共5页
Journal of Northeastern University(Natural Science)
关键词
佐佐木空间型
伪脐子流形
积分子流形
sasakian space form,pseudo-umbilical submanifold,integral submanifold.