摘要
针对Zeeman的双尖点型突变问题推广了Godwin的结果,给出了x4+βy4的开折。并利用Godwin方法得到了一类含有9个参数的仿双尖点型多项式E(x,y)=x4+axy+βy4+γx2y+δxy2+ηx2+θxy+ωy2-ξx-ξy的孤立点的判别条件。
It is introduced the notion of quasidouble cusp polynominal with nine parameters.It is an unfolding of x4 +βy4.Using Godwing's method,we obtained a sufficient condition that determines the isolated critical point of quasidouble cusp polynomial at 0.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1994年第3期13-15,共3页
Journal of Northeast Normal University(Natural Science Edition)