摘要
本文用数学分析的方法,证明了定理;设f(x),g(x)是定义于R上的周期函数,它们的最小正周期分别为T1,T2.如果f(x),g(x)至少有一个是连续的,且T1,T2不可公度,则f(x)十g(x)是非周期函数,在某种意义下,这个定理是“最佳可能”的。
The folluwing theurem is pruved:let T1, T2 be two least positive periods of two periodicfunctions f(x)and g(x), respectively, which defined on the real line.If(1) T1 and T2 are non -com-mensurable,(2)one of f(x)and g(x) is a continuous function ,then f(x)+g(x) is aperiodic func-tion. This theorem is optimally possible,in a manner.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1994年第5期79-81,共3页
Journal of Southeast University:Natural Science Edition
关键词
函数空间
周期函数
function spaces
periodie funetions
aperiodic funetions